CHAPTER	Ratio and Proportion, Indices and Logarithm
1	

[1] (b) Let numbers be $2 x$ and $3 x$.
Therefore, $(3 x)^{2} \quad(2 x)^{2}=320$

$$
\begin{aligned}
9 x^{2} 4 x^{2} & =320 \\
5 x^{2} & =320 \\
x^{2} & =64 \\
x & =8
\end{aligned}
$$

Numbers are: $2 x=2 \times 8=16$

$$
3 x=3 \times 8=24
$$

[2] (d) As per the given information:

$$
\begin{aligned}
& \frac{\mathbf{p - x ^ { \mathbf { 2 } }}}{\mathbf{q}-\mathbf{x}^{\mathbf{2}}}=\frac{\mathbf{p}^{\mathbf{2}}}{\mathbf{q}^{\mathbf{2}}} \\
& \mathrm{q}^{2}\left(\mathrm{p} \quad x^{2}\right)=\mathrm{P}^{2}\left(\mathrm{q} \quad x^{2}\right) \\
& \mathrm{pq}^{2} x^{2} \mathrm{q}^{2}=\mathrm{p}^{2} \mathrm{q} \quad \mathrm{p}^{2} x^{2} \\
& x^{2}\left(p^{2} \mathrm{q}^{2}\right)=\mathrm{pq}(\mathrm{p} \quad \mathrm{q}) \\
& x^{2}=\frac{\mathbf{p q}(\mathbf{p} \square \mathbf{q})}{\mathbf{p}^{\mathbf{2}} \mathbf{\square} \mathbf{q}^{\mathbf{2}}} \\
& x^{2}=\frac{\mathbf{p} \mathbf{q}}{\mathbf{p + q}}
\end{aligned}
$$

[3] (a) Let the quantity of copper and zinc in an alloy be $9 x \mathrm{~kg}$ and 4 xkg .
Therefore, $\quad 9 x=24$
$\mathrm{x}=\frac{24}{9}=\frac{8}{3}=2 \frac{2}{3} \mathrm{~kg}$.
So zinc $=4 x=4 \times \frac{\mathbf{8}}{\mathbf{3}} \mathbf{~ k g}$.
$=10 \frac{2}{3} \mathrm{~kg}$.
[4] (c) $7 \log \left(\frac{16}{15}\right)+5 \log \left(\frac{25}{24}\right)+3 \log \left(\frac{81}{80}\right)$
$=7(\log 16 \log 15)+5(\log 25 \quad \log 24)+3 \log (\log 81 \quad \log 80)$
$=7[4 \log 2(\log 3+\log 5)]+5[2 \log 5 \quad(3 \log 2+\log 3)]$ $+3[4 \log 3(4 \log 2+\log 5)]$
$=28 \log 27 \log 37 \log 5+10 \log 515 \log 25 \log 3$ $+12 \log 312 \log 23 \log 5=\log 2$

S-590 CPT Solved Scanner : Quantitative Aptitude (Paper 4)

[5] (c) Let the numbers be $7 x$ and $8 x$.
So, $\frac{7 x+3}{8 x+3}=\frac{\mathbf{8}}{\mathbf{9}}$
$9(7 x+3)=8(8 x+3)$
$63 x+27=64 x+24$

$$
x=3
$$

Numbers are : $7 x=7 \times 3=21$

$$
8 x=8 \times 3=24
$$

[6] (a) Let the number of one rupee coins be x.
Then, number of 50 paise coins is $4 x$
and number of 25 paise coins is $2 x$
So,
$x+\frac{\mathbf{4 x}}{\mathbf{2}}+\frac{\mathbf{2 x}}{\mathbf{4}}=\mathbf{5 6}$
$4 x+8 x+2 x=56 \times 4$
$14 x=224$
$x=\frac{224}{14}=16$
Number of 50 paise coins is $4 \times 16=64$
[7] (b) $\left(a^{1 / 8}+a^{-1 / 8}\right)\left(a^{1 / 8} a^{-1 / 8}\right)\left(a^{1 / 4}+a^{-1 / 4}\right)\left(a^{1 / 2}+a^{-1 / 2}\right)$
$=\left(a^{1 / 4} a^{-1 / 4}\right)\left(a^{1 / 4}+a^{-1 / 4}\right)\left(a^{1 / 2}+a^{-1 / 2}\right)$
[using ($\left.\left.a^{2} \quad b^{2}\right)=(a b)(a+b)\right]$
$=\left(a^{1 / 2} a^{-1 / 2}\right)\left(a^{1 / 2}+a^{-1 / 2}\right)$
$=a^{1} a^{-1}$
$=a \frac{1}{a}$
[8] (a) $a^{\log _{2}^{6} \cdot \log _{5}^{0} \cdot \log _{6}^{4} \cdot \log _{4}^{4}}$
a $\frac{\log ^{b}}{\log ^{a}} \times \frac{\log ^{a}}{\log ^{b}} \cdot \frac{\log ^{d}}{\log ^{d}} \cdot \frac{\log ^{t}}{\log ^{d}}=\left[\right.$ using $\left.\log a^{b}=\frac{\log ^{b}}{\log ^{a}}\right]$
$=a \frac{\log ^{t}}{\log ^{2}}$
$=a \log _{\mathrm{a}}^{\mathrm{t}}$
$=t$ [using $\mathbf{a}^{\mathbf{l o g o m}_{\mathbf{a}}}=m$]
[9] (b) $\log _{1000} x=\frac{1}{4}$
$(10,000)^{-1 / 4} \quad x=\left[\right.$ using $\log a^{b}=x,=a^{x}=b$
$\frac{1}{(10,000)^{1 / 4}}=x$
$=\frac{1}{10}=x$
[10] (c) When number of people $=8$
then, the share of each person $=\frac{\mathbf{1}}{\mathbf{8}}$ of the total cost.
When number of people $=7$
then, the share of each person $=\frac{\mathbf{1}}{\mathbf{7}}$ of the total cost
Increase in the share of each person $=\frac{1}{7} \square \frac{1}{8}=\frac{1}{56}$ i.e.
$\frac{\mathbf{1}}{\mathbf{7}}$ of $\frac{\mathbf{1}}{\mathbf{8}}$, i.e. $\frac{\mathbf{1}}{\mathbf{7}}$ of the original share of each person.
[11] (a) Let the number of coins be $3 x, 4 x$, and $5 x$.

$$
\begin{gathered}
\text { Then, } 3 x+\frac{\mathbf{4 x}}{\mathbf{2}}+\frac{\mathbf{5 x}}{\mathbf{1 0}}=187 \\
30 x+20 x+5 x=187 \times 10 \\
55 x=1870 \\
x=\frac{\mathbf{1 8 7 0}}{\mathbf{5 5}}=34
\end{gathered}
$$

Number of coins:
One rupee $=3 x=3 \times 34=102$
50 paise $=4 x=4 \times 34=136$
10 paise $=5 x=5 \times 34=170$
[12] (b)

$$
\begin{aligned}
& \frac{x^{m+8 n} \cdot x^{4 m-\theta n}}{x^{6 m-6 n}} \\
= & \frac{x^{m+8 n+4 m-9 n}}{x^{6 m-6 n}}\left[\text { using } \frac{x^{6} \square x^{b}}{x^{2+b}}\right] \\
= & \frac{x^{5 m-6 n}}{x^{6 m-6 n}}
\end{aligned}
$$

S-592 \quad CPT Solved Scanner : Quantitative Aptitude (Paper 4)

$$
=x^{5 m-6 n-6 m+6 n}\left[\text { using } \frac{\mathbf{x}^{\mathbf{a}}}{\mathbf{x}^{\mathbf{b}}}=\mathbf{x}^{\mathbf{a}-\mathbf{b}}\right]
$$

$=x^{-m}$
[13] (a) $\log (2 a \quad 3 b)=\log a \quad \log b$
$\log \left(\begin{array}{ll}2 a & 3 b\end{array}\right)=\log \left(\frac{\mathbf{a}}{\mathbf{b}}\right)$
2a $3 b=\frac{a}{b}$
$2 \mathrm{ab} 3 b^{2}=a$
$2 \mathrm{ab} a=3 \mathrm{~b}^{2}$
$a(2 b \quad 1)=3 b^{2}$
$a=\frac{3 b^{2}}{2 b \square 1}$
[14] (c)
$\frac{1}{1+z^{a-b}+z^{a-c}}+\frac{1}{1+z^{b-c}+z^{b-a}}+\frac{1}{1+z^{0-a}+z^{0-b}}$
$=\frac{1}{1+\frac{z^{-b}}{z^{-a}}+\frac{z^{-c}}{z^{-a}}}+\frac{1}{1+\frac{z^{-c}}{z^{-b}}+\frac{z^{-a}}{z^{-b}}}+\frac{1}{1+\frac{z^{-a}}{z^{-b}}+\frac{z^{-b}}{z^{-b}}}$
$=\frac{z^{-a}}{z^{-a}+z^{-b}+z^{-0}}+\frac{z^{-b}}{z^{-b}+z^{-a}+z^{-a}}+\frac{z^{-c}}{z^{-\theta}+z^{-a}+z^{-b}}$
$=\frac{z^{-a}+z^{-b}+z^{-0}}{z^{-a}+z^{-b}+z^{-0}}$
$=1$
[15] (d) Let the earning of A and B be $4 x$ and $7 x$ respectively.
New earning of $A=4 x \times 150 \%=6 x$
New earning of $\mathrm{B}=7 x \times 75 \%=5.25$
Then, $\frac{\mathbf{6 x}}{\mathbf{5 . 2 5 x}}=\frac{\mathbf{8}}{\mathbf{7}}$
This does not give the value of x
So, the given data is inadequate.
[16] (b) $\frac{P}{Q}=\frac{11}{12}$ and $\frac{P}{R}=\frac{9}{8}$
$\frac{P}{Q}=\frac{11 \times 9}{12 \times 9}=\frac{99}{108}$ and $\frac{P}{R}=\frac{9 \times 11}{8 \times 11}=\frac{99}{88}$

Therefore, $\frac{Q}{R}=\frac{108}{88}=\frac{27}{22}$
So, $Q: R=27: 22$
[17] (c) $\frac{1}{\log _{a b}^{(a b c)}}+\frac{1}{\log _{b c}^{(\mathrm{abc})}}+\frac{1}{\log _{c a}^{(\mathrm{abc})}}$
$=\frac{\frac{1}{\log (a b c)}}{\log (a b)}+\frac{1}{\log (a b c)}+\frac{1}{\log (b c)}+\frac{\log (a b c)}{\log (c a)}$ $\left[\right.$ using $\left.\log _{a} b=\frac{\log b}{\log a}\right]$
$=\frac{\log (a b)}{\log (a b c)}+\frac{\log (b c)}{\log (a b c)}+\frac{\log (c a)}{\log (a b c)}$
$=\frac{\log (a b \times b c \times c a)}{}$
$\log a b c$
$=\frac{\log a^{2} b^{2} c^{2}}{\log (a b c)}$
$=\frac{\log (a b c)^{2}}{\log a b c}=\frac{2 \log (a b c)}{\log (a b c)}=2$
[18] (c) 2^{64}
$=64 \log 2$
$=64 \times 0.30103$
$=19.26592$
Number of digit in $2^{64}=20$.
[19] (a) The ratio of share of A, B and C
$=\frac{1}{4}: \frac{1}{5}: \frac{1}{6}$
$=\frac{15: 12: 10}{60}=15: 12: 10$
Therefore, A's share $=407 \times \frac{\mathbf{1 5}}{\mathbf{3 7}}=₹ 165$
B's share $=407 \times \frac{\mathbf{1 2}}{\mathbf{3 7}}=₹ 132$
C's share $=407 \times \frac{\mathbf{1 0}}{\mathbf{3 7}}=₹ 110$

S-594 \quad CPT Solved Scanner : Quantitative Aptitude (Paper 4)

[20] (a) Let the income of A and B be $3 x$ and $2 x$ respectively and expenditures of A and B be $5 y$ and $3 y$ respectively.
Therefore, $\quad 3 x 5 y=1500$ \qquad
$2 x 3 y=1500$
Solving (i) and (ii) Simultaneously
We get $x=3000$ and $\mathrm{y}=1500$
Therefore, B's income $=2 x=2 \times 3000=₹ 6000$
[21] (d) $4^{x}=5^{y}=20^{2}=k$ (say)
$4=k^{1 / x}$
$5=k^{1 / y}$
$20=k^{1 / 2}$
$4 \times 5=20$
$k^{1 / x} \times k^{1 / y}=k^{1 / z}$
$k^{1 / x+1 / y}=k^{1 / 2}\left(x^{m} \times x^{n}=x^{m+n}\right)$
$k^{\frac{\mathbf{x}+\mathbf{y}}{\mathbf{x y}}}$
$=\mathrm{k}^{1 / 2}$
Therefore, $=\frac{\mathbf{x}+\mathbf{y}}{\mathbf{x y}}=\frac{\mathbf{1}}{\mathbf{z}}\left(x^{m}=x^{n} \quad m=n\right)$

$$
z=\frac{x y}{x+y}
$$

[22] (a)

$$
\begin{aligned}
& \left(\frac{\sqrt{3}}{9}\right)^{\frac{5}{2}}\left(\frac{9}{3 \sqrt{3}}\right)^{\frac{7}{2}} \times 9 \\
& =\left(\frac{3^{\frac{1}{2}}}{3^{2}}\right)^{\frac{5}{2}}\left(\frac{3^{2}}{33^{\frac{1}{2}}}\right)^{\frac{7}{2}} \times 3^{2} \\
& =\left(3^{\frac{1}{2}-2}\right)^{\frac{5}{2}}\left(\frac{3^{2}}{3^{\frac{7}{2}}}\right)^{\frac{7}{2}} \times 3^{2} \\
& =\left(3^{\frac{-3}{2}}\right)^{\frac{5}{2}}\left(3^{\frac{2-3}{2}}\right)^{\frac{7}{2}}
\end{aligned} 3^{2} .
$$

$$
\begin{aligned}
&= 3^{\frac{-15}{4}} \times 3^{\frac{7}{4}} \times 3^{2} \\
&= 3^{\frac{-15}{4}+\frac{7}{4}+2} \\
&=3^{-2+2}=3^{0}=1 \\
& \text { [23] (a) } \frac{\log _{3}^{8}}{\log _{9}^{16} \square \log _{4}^{10}} \\
&= \log _{3}^{8} \cdot \log _{11} 9 \cdot \log _{10}{ }^{4} \\
&= \log _{3}^{28} \cdot \log _{42^{2} \cdot}^{\log _{10}^{28}} \\
&= 3 \log _{3}^{2} \frac{2}{4} \log _{2}^{3} 2 \log _{10} 2 \\
&= \frac{3 \log 2}{\log 3} \cdot \frac{1 \log 3}{2 \log 2} \cdot \frac{2 \log 2}{\log 10} \\
&= \frac{3 \log 2}{\log 10} \\
&= 3 \log 9_{10}^{2}
\end{aligned}
$$

[24] (d) Quantity of glycerine $=40 \times \frac{\mathbf{3}}{\mathbf{4}}=30$ litres
Quantity of water $=40 \times \frac{\mathbf{1}}{\mathbf{4}}=10$ litres
Let x litres of water be added to the mixture.
Then, total quantity of mixture $=(40+x)$ litres
total quantity of water in the mixture $=(10+x)$ litres.
So, $\frac{30}{10+x}=\frac{\mathbf{2}}{\mathbf{1}}$
$30=20+2 x$
$2 x=10$
$x=5$ litres
Therefore, 5 litres of water must be added to the mixture.
[25] (d) Let the third proportional be x.

$$
\frac{a^{2} \square b^{2}}{(a+b)^{2}}=\frac{(a+b)^{2}}{x}
$$

S-596	CPT Solved Scanner : Quantitative Aptitude (Paper 4)

By cross multiplication

$$
\begin{aligned}
& x=(\mathbf{a}+\mathbf{b})^{2} \frac{(\mathbf{a}+\mathbf{b})^{2}}{\left(\mathbf{a}^{2} \square \mathbf{b}^{2}\right)} \\
& x=\frac{(\mathbf{a}+\mathbf{b})^{3}}{(\mathbf{a} \square \mathbf{b})} \\
& \text { [26] (c) } \quad 2^{x-} 2^{x-1}=4 \\
& 2^{x}-\frac{2^{x}}{2}=4 \\
& 2^{\times}\left[1-\frac{1}{2}\right]=4 \\
& 2^{\times}\left[\frac{1}{2}\right]=4 \\
& 2^{x}=8 \\
& 2^{x}=2^{3} \\
& x=3 \\
& x^{x}=3^{3} \\
& =27 \\
& \text { [27] (a) } x=\frac{e^{n} \square e^{-n}}{e^{n}+e^{-n}} \\
& \frac{1}{x}=\frac{\theta^{n}+e^{-n}}{\theta^{n} \square e^{-n}}
\end{aligned}
$$

Applying Componendo \& Dividendo
$\frac{1+x}{1 \square x}=\frac{\theta^{n}+e^{-n}+e^{n} \square e^{-n}}{e^{n}+e^{-n} \square e^{n}+e^{-n}}$
$\frac{1+x}{1 D x}=\frac{2+\theta^{n}}{2 \theta^{-n}}$
$\frac{1+x}{1 \square \mathbf{x}}=\mathrm{e}^{2 n} \frac{1+\mathbf{x}}{1 \square \mathbf{x}}=2 n$
$\log \left(\frac{\mathbf{1 + x}}{1 \square \mathbf{x}}\right)=2 n, n=\frac{\mathbf{1}}{\mathbf{2}} \operatorname{Loge}\left(\frac{\mathbf{1 + x}}{1 \square \mathbf{x}}\right)$
[28] (b) $\log 144$
$=\log (16 \times 9)=\log 16+\log 9$
$=\log 2^{4}+\log 3^{2}$
$=4 \log 2+2 \log 3$.
[29] (b) Let x quantity of tea worth ₹10per kg. be mixed with y quantity worth 14 per kg .
Total price of the mixture $=10 x+14 y$.
and
Total quantity of the mixture $=x+y$
Average price of mixture will be $\frac{\mathbf{1 0 x + 1 4 y}}{\mathbf{x + y}}=11$
$10 x+14 y=11 x+11 y$
$3 y=x$
$\frac{x}{y}=\frac{3}{1}$
or $x: y=3: 1$ which is the required ratio.
[30] (a) Let the present ages of persons be $5 x \& 7 x$.
Eighteen years ago, their ages $=5 x \quad 18$ and $7 x \quad 18$.
According to given:
$\frac{5 \times \square 18}{7 \times 18}=\frac{8}{13}$
$65 x \quad 234=56 x \quad 144$
$9 x=90$
$x=10$
Their present ages are $5 x=5 \times 10=50$ years
$7 x=7 \times 10=70$ years.
[31] (b) $\quad Z=x^{C}$
$Z=\left(y^{a}\right)^{c} \quad\left(y^{a}=x\right)$
$Z=y^{\text {ac }}$
$Z=\left(z^{b}\right)^{a c} \quad\left(z^{b}=y\right)$
$Z=Z^{\text {abc }}$
$a b c=1 \quad\left(x^{m}=x^{n}\right.$ then $\left.m=n\right)$
[32] (c) $\log _{2}\left[\log _{3}\left(\log _{2} x\right)\right]=1$
$=\log _{3}\left(\log _{2} x\right)=2^{1}$ (Converting into exponential form)
$=\log _{2} x=3^{2}$ (Converting into exponential form)
$=\log _{2} x=9$
$=x=2^{9}$ (Converting into exponential form)
$x=512$.

S-598 CPT Solved Scanner : Quantitative Aptitude (Paper 4)
[33] (b) $\log \left(\frac{\mathbf{a}+\mathbf{b}}{\mathbf{4}}\right)=\frac{\mathbf{1}}{\mathbf{2}}(\log a+\log b)$
$\log \left(\frac{\mathbf{a}+\mathbf{b}}{\mathbf{4}}\right)=\log (\mathrm{ab})^{1 / 2}$
[Since, $\log _{a} m n=\log _{a} m+\log _{a} n$ and $n \log _{a} m=\log _{a} m^{n}$]
Take antilog on both sides.
$\frac{a+b}{4}=\sqrt{a b}$
$a+b=4 \sqrt{a b}$
Squaring both sides
$(a+b)^{2}=(4 \sqrt{a b})^{2}$
$a^{2}+b^{2}+2 a b=16 a b$
$a^{2}+b^{2}=14 a b$
$\frac{\mathbf{a}}{\mathbf{b}}+\frac{\mathbf{b}}{\mathbf{a}}=14$, which is the required answer
[34] (a) Given: Capital invested by :
A : ₹ 126,000 , B : ₹ 84,000, C: ₹ $2,10,000$
The ratio of their investments is :
126:84:210=3:2:5
Profit (at year end) = ₹ 2,42,000 gives

$$
\begin{aligned}
& \text { A's Share }=\frac{\mathbf{3}}{\mathbf{1 0}} \times 2,42,000=₹ 72,600 \\
& \text { B's Share }=\frac{\mathbf{2}}{\mathbf{1 0}} \times 2,42,000=₹ 48,400 \\
& \text { C's Share }=\frac{\mathbf{5}}{\mathbf{1 0}} \times 2,42,000=₹ 1,21,000
\end{aligned}
$$

[35] (c) $\frac{\mathrm{p}}{\mathrm{q}}=-\frac{2}{3}$
So, $P=\frac{-2 q}{3}$
Now, $\frac{2 p+q}{2 p-q}$
Substituting the value of p from (i)

Chapter - 1 : Ratio and Proportion, Indices and Logarithm

$$
\begin{aligned}
& \frac{2\left(\frac{-2 q}{3}\right)+q}{2\left(\frac{-2 q}{3}\right)-q} \\
& \frac{-4 q}{\frac{3}{-4 q}+q} \\
& \frac{-4 q}{3}-q \\
& \frac{-4 q+3 q}{3} \\
& \frac{-4 q-3 q}{3} \\
& \frac{-q}{3} \times \frac{3}{-7 q} \\
& \frac{1}{7}
\end{aligned}
$$

[36] (c) Let the fourth proportional to $x, 2 x,(x+1)$ be t, then,
$\frac{x}{2 x}=\frac{x+1}{t}$
$\frac{1}{2}=\frac{x+1}{t}$
$\mathrm{t}=2 \mathrm{x}+2$
\therefore Fourth proportional to $x, 2 x,(x+1)$ is $(2 x+2)$
i.e. $x: 2 x::(x+1):(2 x+2)$
[37] (d) $x=3^{1 / 3}+3^{-1 / 3}$
On cubing both sides, we get

$$
\begin{aligned}
& \mathrm{x}^{3}=\left(3^{1 / 3}+3^{-1 / 3}\right)^{3} \\
& x^{3}=3+3^{-1}+3 \times 3^{1 / 3} \times \frac{1}{3^{1 / 3}}\left(3^{1 / 3}+3^{-1 / 3}\right) \\
& x^{3}=3+\frac{1}{3}+3\left(3^{1 / 3}+3^{-1 / 3}\right) \\
& x^{3}=3+\frac{1}{3}+3 x[\text { Using (1)] }
\end{aligned}
$$

S-600 \quad CPT Solved Scanner : Quantitative Aptitude (Paper 4)

$$
\begin{aligned}
& x^{3}-3 x=\frac{9+1}{3} \\
& 3\left(x^{3}-3 x\right)=10 \\
& \therefore 3 x^{3}-9 x=10
\end{aligned}
$$

[38] (b) $\quad\left[1-\left\{1-\left(1-x^{2}\right)^{-1}\right\}^{-1}\right]^{-1 / 2}$
$=\left[1-\left\{1-\frac{1}{1-x^{2}}\right\}^{-1}\right]^{-1 / 2}$
$=\left[1-\left\{\frac{1-x^{2}-1}{1-x^{2}}\right\}^{-1}\right]^{-1 / 2}$
$=\left[\overline{1}-\left\{\frac{-x^{2}}{1-x^{2}}\right\}^{-1}\right]^{-1 / 2}$
$=\left[1-\left\{-\frac{1-x^{2}}{x^{2}}\right\}\right]^{-1 / 2}$
$=\left[1+\frac{1-x^{2}}{x^{2}}\right]^{-1 / 2}=\left[\frac{x^{2}+1-x^{2}}{x^{2}}\right]^{-1 / 2}$
$=\left[\frac{1}{x^{2}}\right]^{-1 / 2}=\left(x^{2}\right)^{1 / 2}$
$=x$
[39] (a) $\log (m+n)=\log m+\log n$
$\log (m+n)=\log (m n)[\because \log (a b)=\log a+\log b]$ Taking Antilog on both side
Antilog $[\log (m+n)]=$ Antilog $[\log m n]$
$\therefore \mathrm{m}+\mathrm{n}=\mathrm{mn}$

$$
m n-m=n
$$

$$
m\left(\begin{array}{ll}
\mathrm{n} & 1
\end{array}\right)=\mathrm{n}
$$

$$
\mathrm{m}=\frac{\mathrm{n}}{\mathrm{n}-1}
$$

[40] (a) $\quad \log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$
$\log _{4}\left(\frac{x^{2}+x}{x+1}\right)=2\left[\because \log _{\mathrm{a}} \mathrm{m}-\log _{\mathrm{a}} \mathrm{n}=\log _{\mathrm{a}}\left(\frac{\mathrm{m}}{\mathrm{n}}\right)\right]$

$$
\begin{aligned}
& 4^{2}=\frac{\mathrm{x}^{2}+\mathrm{x}}{\mathrm{x}+1} \\
& 16=\frac{\mathrm{x}^{2}+\mathrm{x}}{\mathrm{x}+1} \\
& 16 \mathrm{x}+16=x^{2}+x \\
& x^{2}-15 x-16=0 \\
& x^{2}-16 x+x-16=0 \\
& \mathrm{x}(\mathrm{x} 16)+1(\mathrm{x} 16)=0 \\
& (\mathrm{x}+1)(\mathrm{x} 16)=0 \\
& \mathrm{x}=1 \text { or } \mathrm{x}=16 \\
& \text { Since } \mathrm{x}=1 \text { is not possible therefore } \mathrm{x}=16
\end{aligned}
$$

[41] (b) $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$

$$
\begin{align*}
& =2^{n}\left(1+\frac{1}{2}\right) \\
& 2 n(2-1) \\
& =\frac{3}{2}=\frac{\mathbf{3}}{2} \\
& 1 \tag{1}
\end{align*}
$$

[42] (a) $2^{x} \times 3^{y} \times 5^{z}=360$.
The factors of 360 are:
$2^{3} \times 3^{2} \times 5$. $2^{3} \times 3^{2} \times 5^{1}=360$
On comparing (1) and (2), we get;
$x=3, y=2$ and $z=1$
[43] (c) $\left[\log _{10} \sqrt{25} \square \log _{10}\left(2^{2}\right)+\log _{10}\left(4^{2}\right)\right]^{x}$
$=\left[\log _{10} 5-3 \log _{10} 2+\log _{10}\left(2^{4}\right)\right]^{x}$
$=\left[\log _{10} 5-3 \log _{10} 2+4 \log _{10}{ }^{2}\right]^{x}$
$=\left[\log _{10} 5+\log _{10}{ }^{2}\right]^{x}$
$=\left[\log _{10}(5 \times 2)\right]^{x}[\log (m n)=\log m+\log n]$
$\left.=\log _{10} 10\right]^{x}$
$=1^{x}\left[\log _{\mathrm{a}} \mathrm{a}=1\right]$
$=1$
[44] (c) Same as Ans. 26
[45] (d) $\log _{a} b+\log _{a} c=0$
$\log _{\mathbf{a}} b c=0$

S-602 \quad CPT Solved Scanner : Quantitative Aptitude (Paper 4)

$$
\mathrm{a}^{0}=\mathrm{bc}
$$

$\mathrm{bc}=1$
$\therefore \mathrm{b}=\frac{1}{\mathrm{c}}$
So, b and c are reciprocals.
[46] (c) Let the number added be x
$\frac{49+x}{68+x}=\frac{3}{4}$
$196+4 \mathrm{x}=204+3 \mathrm{x}$
$x=8$
[47] (c) Let the ratio be $5 \mathrm{x}: 7 \mathrm{x}$
If 10 student left, Ratio became $4: 6$
$\frac{5 x-10}{7 x-10}=\frac{4}{6}$
$30 \mathrm{x}-60=28 \mathrm{x}-40$
$2 x=20$
$\mathrm{x}=10$
$\therefore \quad$ No. of students in each class is $5 x$ and $7 x$
i.e. 50,70
[48] (b) $2 \log x+2 \log x^{2}+2 \log x^{3}+$ \qquad
$2\left[\log x+\log x^{2}+\log x^{3}+\ldots\right]$
$2[\log x+2 \log x+3 \log x+\ldots \ldots \ldots$.
$2 \log x[1+2+3 \ldots \ldots n]$
$2 \log x \times \frac{n(n+1)}{2}$
$=n(n+1) \log x$
[49] (d) 2.7777
$2+0.7+0.07+0.007+$
$2+\left(\frac{7}{10}+\frac{7}{100}+\frac{7}{1000}+\ldots\right)$
$2+7\left(\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\ldots\right)$
$2+7\left(\frac{1 / 10}{1 \square 1 / 10}\right)$
$=2+7 \times \frac{1}{9}$
$=2+\frac{7}{9}$
$=\frac{18+7}{9}$
$=\frac{25}{9}$
[50] (a) $\left(\frac{\log _{10} x \square 3}{2}\right)+\left(\frac{11 \square \log _{10} x}{3}\right)=2$
$3 \log _{10} x \quad 9+222 \log _{10} x=12$
$\log _{10} x+13=12$
$\log _{10} x=1$
$x=10^{-1}$
[51] (a) $\frac{A}{B}=\frac{2}{5}=\frac{2 k}{5 k}$

$$
\frac{10 A+3 B}{5 A+2 B}=\frac{20 k+15 k}{10 k+10 k}=\frac{35 k}{20 k}
$$

$=\frac{35}{20}$
$=\frac{7}{4}$
[52] (a) Given : $\mathrm{n}=\mathrm{M}$! for M 2
$\frac{1}{\log _{2}{ }^{n}}+\frac{1}{\log _{3}{ }^{n}}+\frac{1}{\log _{4}{ }^{n}}+\ldots \ldots \ldots \ldots .+\frac{1}{\log _{m}{ }^{n}}$
or, $=\log _{n}{ }^{2}+\log _{n}{ }^{3}+\log _{n}{ }^{4}+\ldots \ldots \ldots \ldots . . .+\log _{n}{ }^{m}$
$=\log _{n}(2 \times 3 \times 4 \times$ \qquad $\times \mathrm{m}$)

$$
\left(\therefore \log _{b}{ }^{2}=\frac{1}{\log _{2}^{b}}\right)
$$

$=\log _{\mathrm{n}}(\mathrm{m}!)$
$=\log _{n}{ }^{n}$
$=1$
[53] (a) Given : $\mathrm{A}: \mathrm{B}=\mathrm{B}: \mathrm{C}$

$$
\begin{array}{ll}
& B^{2}=A \times C \\
\text { or } & B=\sqrt{A \times C} \\
\& & A=1,60,000 ; C=2,50,000
\end{array}
$$

S-604	CPT Solved Scanner : Quantitative Aptitude (Paper 4)

$$
\begin{aligned}
& B=\sqrt{1,60,000 \times 2,50,000} \\
& B=2,00,000
\end{aligned}
$$

[54] (c) Sub duplicate ratio of a: $9=\sqrt{\mathrm{a}}: \sqrt{9}$, Compound Ratio (C.R.) $=8: 15$
Compound Ratio of $4: 5$ and sub duplicate ratio of a:9 is given by
C. $R=\frac{4}{5} \times \frac{\sqrt{a}}{\sqrt{9}}$
$\frac{8}{15}=\frac{4}{5} \times \frac{\sqrt{a}}{\sqrt{9}}$
$\sqrt{\mathrm{a}}=\frac{8 \times 5 \times \sqrt{9}}{15 \times 4}$
$\sqrt{\mathrm{a}}=\frac{8 \times 5 \times 3}{15 \times 4}$
$\sqrt{\mathrm{a}}=2$
On squaring $(\sqrt{a})^{2}=2^{2}$

$$
a=4
$$

[55] (a) If $\log _{2} x+\log _{4} x=6$
$\frac{\log x}{\log 2}+\frac{\log x}{\log 4}=6$
$\frac{\log x}{\log 2}+\frac{\log x}{\boldsymbol{\operatorname { l o g }} 2^{2}}=6$
$\frac{\log x}{\log 2}+\frac{\log x}{2 \log 2}=6$
$\frac{\log x}{\log 2}\left[1+\frac{1}{2}\right]=6$
$\frac{\log x}{\log 2} \times \frac{3}{2}=6$
$\frac{\log x}{\log 2}=6 \times \frac{2}{3}$
$\frac{\log x}{\log 2}=4$
$\log x=4 \log 2$
$\log x=\log 2^{4}$
$x=2^{4}$
$x=16$
[56] (d) Given x varies inversely as square of y
i. e. $x \propto \frac{1}{y^{2}}$
$x=k \frac{1}{y^{2}}$
$x=\frac{\mathbf{k}}{\mathbf{y}^{\mathbf{2}}} \cdots$
Given $x=1, y=2$ then
$1=\frac{\mathbf{k}}{(2)^{2}} \quad \mathrm{k}=1 \times 4=4$
Now putting $y=6, k=4$ in equation (1)

$$
\begin{aligned}
& x=\frac{4}{6^{2}} \\
& x=\frac{4}{36}=\frac{1}{9}
\end{aligned}
$$

[57] (b) $\frac{3^{n+1}+3^{n}}{3^{n+3}-3^{n+1}}=\frac{3^{n} \cdot 3^{1}+3^{n}}{3^{n} \cdot 3^{3}-3^{n} \cdot 3^{1}}$
$=\frac{3^{n}\left(3^{1}+1\right)}{3^{n}\left(3^{3}-3\right)}$
$=\frac{(3+1)}{(27-3)}$
$=\frac{4}{24}$
$=\frac{1}{6}$
[58] (c) Given $\log _{x} y=100$
$\log _{2} x=10$. \qquad
Multiply eq (1) \& (2)

$$
\begin{aligned}
\log _{x} y . & \log _{2} x
\end{aligned}=100 \times 10 \times \begin{aligned}
\frac{\log y}{\log x} \times \frac{\log x}{\log 2} & =1,000 \\
\log y & =1,000 \log 2 \\
\log y & =\log 2^{1,000} \\
y & =2^{1,000}
\end{aligned}
$$

[59] (a) If say a, b, c, d are in proportion they bear a common ratio that is $\frac{\mathbf{a}}{\mathbf{b}}=\frac{\mathbf{c}}{\mathbf{d}}$ $\begin{array}{lll}\text { Option (A) } & \frac{\mathbf{6}}{\mathbf{8}} \quad \frac{\mathbf{6}}{\mathbf{7}}\end{array}$

S-606

 CPT Solved Scanner : Quantitative Aptitude (Paper 4)Option (B) $\quad \frac{7}{3}=\frac{14}{6}$
Option (C) $\quad \frac{18}{27}=\frac{12}{18}$
Option (D) $\quad \frac{8}{6}=\frac{12}{9}$
[60] (b) If $x^{1}(x)^{1 / 3}=\left(x^{1 / 3}\right)^{x}$

$$
\begin{aligned}
x^{1+1 / 3} & =\mathbf{x}^{\frac{\mathbf{1}}{\mathbf{3}} \mathbf{x}} \\
x^{4 / 3} & =\mathbf{x}^{\frac{\mathbf{1}}{\mathbf{3}} \mathbf{x}}
\end{aligned}
$$

on comparing

$$
\frac{4}{3} \leq \frac{x}{3}
$$

$3 x=12 \quad x=4$
[61] (d) Given

$$
\begin{aligned}
\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a} & =\frac{1}{a b c} \\
\frac{c+a+b}{a b c} & =\frac{1}{a b c}
\end{aligned}
$$

$$
a+b+c=1
$$

taking log on both side
$\log (a+b+c)=\log 1$
$\log (a+b+c)=0$
[62] (a) Let two Nos. be x and y
Mean proportion between x and y is 18
So, $x, 18, y$ are in proportion
$x: 18:: 18: y$
$\frac{x}{18}=\frac{18}{y}$
$x y=324$
$x=\frac{324}{y}$
If third proportion between $x \& y$ be 144
So, $x, y, 144$ are in proportion

$$
\begin{align*}
& x: y:: y: 144 \\
& \frac{\mathbf{x}}{\mathbf{y}}=\frac{\mathbf{y}}{\mathbf{1 4 4}} \\
& \mathrm{y}^{2}=144 \mathrm{x} \tag{2}
\end{align*}
$$

Putting the value of x in equation (2)

$$
\begin{aligned}
& y^{2}=144 \times \frac{\mathbf{3 2 4}}{\mathbf{y}} \\
& y^{3}=144 \times 324 \\
& y=\sqrt[3]{144 \times 324} \\
& y=\sqrt[3]{3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3} \\
& y=\sqrt[3]{6 \times 6 \times 6 \times 6 \times 6 \times 6} \\
& y=6 \times 6 \\
& y=36 \\
& \text { Putting } y=36 \text { in equation (1) } \\
& x=\frac{\mathbf{3 2 4}}{\mathbf{3 6}}=9 \\
& x=9, y=36
\end{aligned}
$$

[63] (a) Given

$$
\begin{aligned}
& \left(\log _{\sqrt{x})^{2}}=\log _{x}\right. \\
& \left(\frac{\log 2}{\log \sqrt{x}}\right)^{2}=\left(\frac{\log 2}{\log x}\right) \\
& \left(\frac{\log 2}{\log x^{1 / 2}}\right)^{2}=\frac{\log 2}{\log x} \\
& \left(\frac{\log 2}{\frac{1}{2} \log x}\right)^{2}=\frac{\log 2}{\log x} \\
& \left(\frac{2 \log 2}{\log x}\right)^{2}=\left(\frac{\log 2}{\log x}\right) \\
& 4\left(\frac{\log 2}{\log x}\right)^{2}=\left(\frac{\log 2}{\log x}\right)^{1}
\end{aligned}
$$

S-608	CPT Solved Scanner : Quantitative Aptitude (Paper 4)

$$
\begin{aligned}
4 \frac{\log 2}{\log x} & =1 \\
4 \log 2 & =\log x \\
\log 2^{4} & =\log x \\
2^{4} & =x \quad x=16
\end{aligned}
$$

[64] (d) Mean Proportion $=\sqrt{24 \times 54}$

$$
\begin{aligned}
& =\sqrt{1296} \\
& =36
\end{aligned}
$$

[65] (c) The triplicate Ratio of $4: 5=4^{3}: 5^{3}$

$$
=64: 125
$$

[66] (a) If $\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0$

$$
\begin{align*}
& a^{1 / 3}+b^{1 / 3}+c^{1 / 3}=0 \\
& a^{1 / 3}+b^{1 / 3}=c^{1 / 3} \tag{i}
\end{align*}
$$

Cube on both side

$$
\begin{aligned}
& \left(a^{1 / 3}+b^{1 / 3}\right)^{3}=\left(c^{1 / 3}\right)^{3} \\
& \left(a^{1 / 3}\right)^{3}+\left(b^{1 / 3}\right)^{3}+3 \cdot a^{1 / 3} \cdot b^{1 / 3}\left(a^{1 / 3}+b^{1 / 3}\right)=c \\
& a+b+3 a^{1 / 3} \cdot b^{1 / 3} \cdot\left(c^{1 / 3}\right)=c \\
& a+b c 3 a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3}=c \\
& a+b+c=3 a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3} \\
& \left(\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{\mathbf{3}}\right)=\frac{2 a^{1 / 3} \cdot \mathbf{b}^{1 / 3} \cdot \mathbf{c}^{1 / 3}}{\boldsymbol{\beta}^{6}} \\
& \left(\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{\mathbf{3}}\right)^{\mathbf{3}}=\left(\mathrm{a}^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3}\right)^{3}=a b c
\end{aligned}
$$

[67] (a) Since Ratio of three Number is $1: 2: 3$
First No. $=x$
Second No. $=2 x$
Third No. $=3 x$
Sum of squares of numbers $=504$

$$
\begin{aligned}
&(x)^{2}+(2 x)^{2}+(3 x)^{2}=504 \\
& x^{2}+4 x^{2}+9 x^{2}=504 \\
& 14 x^{2}==504 \\
& x^{2}=\frac{\mathbf{5 0 4}}{\mathbf{1 4}} \\
& x^{2}=36 \\
& x=6
\end{aligned}
$$

First No. $=x=6$
Second No. $=2 x=2 \times 6=12$
Third No. $=3 \mathrm{x}=3 \times 6=18$
[68] (d) $\log _{4} 9 \cdot \log _{3} 2$
$=\frac{\log 9}{\log 4} \cdot \frac{\log 2}{\log 3}$
$=\frac{\log 3^{2}}{\log 2^{2}} \cdot \frac{\log 2}{\log 3}$
$=\frac{2 \log 3}{2 \log 2} \cdot \frac{\log 2}{\log 3}$
$=1$
[69] (c) $\left(\log _{y} x \cdot \log _{z} y \cdot \log _{x} z\right)^{3}$
$=\left(\frac{\log x}{\log y} \cdot \frac{\log y}{\log z} \cdot \frac{\log z}{\log x}\right)^{3}$
$=(1)^{3}$
$=1$
[70] (c) The sum of two No. $=80$
First No. = x
Second No. $=\left(\begin{array}{ll}80 & x\end{array}\right)$
Product two No = x. $(80 \quad$ x $)$
$P=80 x \quad x^{2}$
w.r.f. (x)

$$
\begin{align*}
& \frac{\mathbf{d p}}{\mathbf{d x}}=80 \quad 2 x \tag{2}\\
& \frac{\mathbf{d}^{2} p}{\mathbf{d x ^ { 2 }}}=2
\end{align*}
$$

For max/minima

$$
\frac{\mathbf{d p}}{\mathbf{d x}}=0
$$

$$
\begin{array}{rl}
80 & 2 x
\end{array}=0
$$

$x=40$ in equation (iii)

S-610 \quad CPT Solved Scanner : Quantitative Aptitude (Paper 4)

function is maximum at $x=40$
Numbers are 40, (80 40)
$=40,40$
[71] (b) Given,
$x: y=2: 3$
Let $x=2 k, y=3 k$
$(5 x+2 y):(3 x \quad y)$
$=\frac{(5 x+2 y)}{(3 x-y)}$
$=\frac{5 \times 2 k+2 \times 3 k}{3 \times 2 k-3 k}$
$=\frac{10 k+6 k}{6 k-3 k}$
$=\frac{16 K}{3 K}$
$=16: 3$
[72] (b) If $(25)^{150}=(25 x)^{50}$

$$
25^{150}=25^{50} \cdot x^{50}
$$

$$
\frac{25^{150}}{25^{50}}=x^{50}
$$

$$
25^{100}=x^{50}
$$

$$
\left(5^{2}\right)^{100}=x^{50}
$$

$$
5^{200}=x^{50}
$$

$$
\left(5^{4}\right)^{50}=x^{50}
$$

$$
5^{4}=x
$$

$$
x=5^{4}
$$

[73] (c) $\left(\frac{y^{a}}{y^{b}}\right)^{a^{2}+\infty b+b^{2}}\left(\frac{y^{b}}{y^{0}}\right)^{b^{2}+b o+0^{2}} \cdot\left(\frac{y^{0}}{y^{a}}\right)^{\mathbf{o}^{2}+\infty 0+a^{2}}$
$=\left(y^{a-b}\right)^{a^{2}+a b+b^{2}} \cdot\left(y^{b-g} b^{2}+b 0+c^{2} \cdot\left(y^{0-a}\right)^{c^{2}+\infty 0+a^{2}}\right.$
$=y^{a^{3}-b^{3}} \cdot y^{b^{3}-0^{3}} \cdot y^{0^{2}-a^{3}}$
$=y^{\mathbf{a}^{3}-b^{3}+b^{3}-a^{3}+a^{3}-a^{3}}$
$=y^{0}=1$
[74] (b) Let Salary of $Q=100$

$$
\begin{aligned}
\text { Salary of } P & =100 \quad 25 \% \text { of } 100 \\
& =100 \quad 25 \\
& =75 \\
\text { Salary of } R & =100+20 \% \text { of } 100 \\
& =100+20 \\
& =120
\end{aligned}
$$

Ratio of salary of R and $P=120: 75=8: 5$
[75] (b) If $x^{2}+y^{2}=7 x y$
$x^{2}+y^{2}+2 x y=7 x y+2 x y$
$(x+y)^{2}=9 x y$
taking log on both side
$\log (x+y)^{2}=\log 9 x y$
$2 \log (x+y)=\log 9+\log x+\log y$
$2 \log (x+y)=\log 3^{2}+\log x+\log y$
$2 \log (x+y)=2 \log 3+\log x+\log y$
$2 \log (x+y) \quad 2 \log 3=\log x+\log y$
$2\left[\log \frac{(x+y)}{3}\right]$
$=\log x+\log y$
$\log \frac{(x+y)}{\mathbf{3}}=\frac{\mathbf{1}}{\mathbf{2}}[\log x+\log y]$
[76] (b) A person has Assets worth = ₹ 1,48,200
Ratio of share of wife, son \& daughter

$$
\begin{aligned}
& =3: 2: 1 \\
\text { Sum of Ratio } & =3+2+1=6 \\
\text { Share of Son } & =\frac{\mathbf{2}}{\mathbf{6}} \times 1,48,200 \\
& =49,400
\end{aligned}
$$

[77] (c) If $x=\log _{24} 12, y=\log _{36} 24$ and $z=\log _{48} 36$ then

$$
\begin{aligned}
& X Y Z+1 \\
= & \log _{24} 12 \times \log _{36} 24 \times \log _{48} 36+1 \\
= & \frac{\log 12}{\log 24} \cdot \frac{\log 24}{\log 36} \cdot \frac{\log 36}{\log 48}+1
\end{aligned}
$$

$$
=\frac{\log 12}{\log 48}+1
$$

$$
=\frac{\log 12+\log 48}{\log 48}
$$

S-612 \quad CPT Solved Scanner : Quantitative Aptitude (Paper 4)

$$
\begin{aligned}
& =\frac{\log (12 \times 48)}{\log 48} \\
& =\frac{\log (576)}{\log 48} \\
& =\frac{\log 24^{2}}{\log 48} \\
& =\frac{2 \log 24}{\log 48} \\
& =2 \cdot \frac{\log 24}{\log 36} \cdot \frac{\log 36}{\log 48} \\
& =2 . \log _{36} 24 \cdot \log _{48} 36 \\
& =2 \mathrm{y} \mathrm{z}
\end{aligned}
$$

[78] (a) Given $\log x=a+b, \log y=a \quad b$

$$
\begin{aligned}
\log \left(\frac{\mathbf{1 0 x}}{\mathbf{y}^{\mathbf{2}}}\right) & =\log 10 x \quad \log y^{2} \\
& =\log 10+\log x \quad 2 \log y \\
& =1+(a+b) \quad 2(a \quad b) \\
& =1+a+b \quad 2 a+2 b \\
& =1 \quad a+3 b
\end{aligned}
$$

[79] (b) If $x=1+\log _{p} q r, y=1+\log _{q} r p, z=1+\log _{r} p q$
$x=1+\frac{\log q r}{\log p}$
$x=\frac{\log p+\log q r}{\log p}$
$x=\frac{\log p q r}{\log p}$
$\frac{1}{x}=\frac{\log p}{\log p q}$
Similarly
$\frac{1}{y}=\frac{\log q}{\log p q}$
$\frac{1}{z}=\frac{\log r}{\log p q}$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{\log p}{\log p q}+\frac{\log q}{\log p q}+\frac{\log r}{\log p q}$

$$
\begin{aligned}
& =\frac{\log p+\log q+\log r}{\log p q r} \\
& =\frac{\log p q r}{\log p q r} \\
& =1
\end{aligned}
$$

[80] (c) Ratio of the salary of a person in three months $=2: 4: 5$
Let,
Salary of $I^{\text {st }}$ month $=2 x$
Salary of II ${ }^{\text {nd }}$ month $=4 x$
Salary of III ${ }^{\text {rd }}$ month $=5 x$

Given

(Salary of Product of last two months) (Salary of Product I ${ }^{\text {st }}$ two months) $=4,80,00,000$

$$
\begin{aligned}
(4 x .5 x)(2 x .4 x) & =4,80,00,000 \\
20 x^{2} & =4,80,00,000 \\
12 x^{2} & =4,80,00,000 \\
x^{2} & =40,00,000 \\
x & =2,000
\end{aligned}
$$

Salary of the person for second month $=4 x=4 \times 2,000=8,000$
[81] (a) Let SP of mixture is ₹ 100
Then Profit $=14.6 \%$ of 100

$$
=14.6
$$

CP of mixture $=\left(\begin{array}{ll}100 & 14.6\end{array}\right)$
$=85.4$
If SP is ₹ 100 then $\mathrm{CP}=85.4$
If $S P$ is ₹ 1 then $C P=\frac{\mathbf{8 5 . 4}}{\mathbf{1 0 0}}$
If $S P$ is $₹ 17.60$ then $C P=\frac{\mathbf{8 5 . 4}}{\mathbf{1 0 0}} \times 17.60$
$=15.0304$
CP of the Mixture per $\mathrm{kg}=₹ 15.0304$
$2^{\text {nd }}$ difference $=$ Profit by SP 1 kg of $2^{\text {nd }}$ kind @ ₹ 15.0304
$=15.5415 .0304$
$=0.5096$
$1^{\text {st }}$ difference $=₹ 15.030413 .84$
= ₹ 1.1904
The Require Ratio $=\left(2^{\text {nd }}\right.$ difference $):\left(1^{\text {st }}\right.$ difference $)$

$$
\begin{aligned}
& =0.5096: 1.1904 \\
& =3: 7
\end{aligned}
$$

S-614 CPT Solved Scanner : Quantitative Aptitude (Paper 4)

[82] (d) If $p^{x}=q, q^{y}=r$ and $r^{z}=p^{6}$
$q=p^{x}, q^{y}=r$ and $r^{2}=p^{6}$
$\left(q^{y}\right)^{z}=p^{6}$
$\left[\left(p^{x}\right)^{y}\right]^{2}=p^{6}$
$p^{x y z}=p^{6}=x y z=6$
[83] (a) $\log x=m+n$ and $\log y=m \quad n$

$$
\text { Then } \begin{aligned}
\log \left(\frac{10 x}{\mathbf{y}^{2}}\right) & =\log 10 x \quad \log y^{2} \\
& =\log 10+\log x \quad 2 \log y \\
& =1+\log x 2 \log y \\
& =1+(m+n) 2(m \quad n) \\
& =1+m+n \quad 2 m+2 n \\
& =3 n \quad m+1
\end{aligned}
$$

[84] (a) If $15\left(2 p^{2} \quad q^{2}\right)=7 p q$
$30 p^{2} \quad 15 q^{2}=7 p q$
$30 p^{2} \quad 7 p q \quad 15 q^{2}=0$
$30 p^{2} \quad 25 p q+18 p q \quad 15 q^{2}=0$
$5 p(6 p \quad 5 q)+3 q(6 p \quad 5 q)=0$
$(6 p \quad 5 q)(5 p+3 q)=0$
If $6 p 5 q=0$ and $5 p+3 q=0$
$6 p=5 q \quad 5 p=3 q$
$\frac{\mathbf{p}}{\mathbf{q}}=\frac{\mathbf{5}}{\mathbf{6}}=\mathrm{p}: q=5: 6 \frac{\mathbf{p}}{\mathbf{q}}=\frac{\mathbf{- 3}}{\mathbf{5}}$
(not possible)
[85] (b) The third proportion of 12,30
$\mathrm{c}=\frac{\mathbf{b}^{\mathbf{2}}}{\mathbf{a}}=\frac{\mathbf{(3 0})^{\mathbf{2}}}{\mathbf{1 2}}=\frac{\mathbf{9 0 0}}{\mathbf{1 2}}=75$
The Mean proportion of 9,25
$b=\sqrt{\mathbf{a c}}=\sqrt{9 \times 25}=\sqrt{225}=15$
Ratio of third proportion of 12, 30
and Mean proportion of $9,25=75: 15$

$$
=5: 1
$$

[86] (c) $\log _{5} 3 \times \log _{3} 4 \times \log _{2} 5$
$=\frac{\log 3}{\log 5} \times \frac{\log 4}{\log 3} \times \frac{\log 5}{\log 2}$

$$
\begin{aligned}
& =\frac{\log 4}{\log 2} \\
& =\frac{\log 2^{2}}{\log 2} \\
& =\frac{2 \log 2}{-\log 2}=2
\end{aligned}
$$

[87] (a) Let x to be added
Then $(10+x),(18+x),(22+x),(38+x)$ are in prop.
Product of Extremes $=$ Product of Mean
$(10+x)(38+x)=(18+x)(22+x)$
$380+10 x+38 x+y^{2}=396+18 x+22 x+y^{2}$
$48 x+380=396+40 x$
$48 x-40 x=396-380$
$8 x=16$
$x=2$
[88] (b) $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}=\frac{2^{n}+2^{n} \cdot 2^{-1}}{2^{n} \cdot 2^{1}-2^{n}}$

$$
\begin{aligned}
& =\frac{2^{\prime}\left(1+2^{-1}\right)}{2^{h}\left(2^{1}-1\right)} \\
& =\frac{\left(\frac{1}{1}+\frac{1}{2}\right)}{(2-1)} \\
& =\frac{\left(\frac{2+1}{2}\right)}{1} \\
& =\left(\frac{3}{2}\right)
\end{aligned}
$$

[89] (b) The integral part of a logarithms is called Characteristic and the decimal part of a logarithm is called mantissa.
[90] (b) $\frac{x^{2}-(y-z)^{2}}{(x+z)^{2}-y^{2}}+\frac{y^{2}-(x-z)^{2}}{(x+y)^{2}-z^{2}}+\frac{z^{2}-(x-y)^{2}}{(y+z)^{2}-x^{2}}$
$=\frac{(x+y-z)(x-y+z)}{(x+z+y)(x+z-y)}+\frac{(y+x-z)(y-x+z)}{(x+y+z)(x+y-z)}+\frac{(z+x-y)(z-x+y)}{(y+z+x)(y+z-x)}$

S-616	CPT Solved Scanner : Quantitative Aptitude (Paper 4)

$$
\begin{aligned}
& =\frac{\mathbf{x}+\mathbf{y}-\mathbf{z}}{\mathbf{x + y + z}+\frac{\mathbf{y}+\mathbf{z}-\mathbf{x}}{\mathbf{x}+\mathbf{y}+\mathbf{z}}+\frac{\mathbf{z}+\mathbf{x}-\mathbf{y}}{\mathbf{x}+\mathbf{y}+\mathbf{z}}} \\
& =\frac{\mathbf{x}+\mathbf{y - z}+\mathbf{y + z - x}+\mathbf{z}+\mathbf{x}-\mathbf{y}}{\mathbf{x + y + z}} \\
& =\frac{\mathbf{x + y + z}}{\mathbf{x}+\mathbf{y}+\mathbf{z}}=1
\end{aligned}
$$

[91] (d) Given $x=3 y$ and $y=\frac{\mathbf{2}}{\mathbf{3}} z$

$$
\begin{aligned}
& \frac{\mathbf{x}}{\mathbf{y}}=\frac{\mathbf{3}}{\mathbf{1}} \text { and } \frac{\mathbf{y}}{\mathbf{z}}=\frac{\mathbf{2}}{\mathbf{3}} \\
& x: y=3: 1 \text { and } y: z=2: 3 \\
& =3 \times 2: 1 \times 2 \\
& =6: 2
\end{aligned}
$$

$x: y: z=6: 2: 3$
[92] (c) If $\log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$
$\log _{4}\left\{\frac{\left(x^{2}+x\right)}{(x+1)}\right\}=2$
$\log _{4}\left\{\frac{x(x+1)}{(x+1)}\right\}=2$
$\log _{4} x=2$
$x=4^{2}$
$x=16$
[93] (b) $\frac{1}{\log _{3} 60}+\frac{1}{\log _{4} 60}+\frac{1}{\log _{5} 60}$

$$
=\log _{80} 3+\log _{80} 4+\log _{80} 5 \quad\left[\square \frac{1}{\log _{a} b}=\log _{b} a\right]
$$

$$
=\quad \log _{80}(3 \times 4 \times 5)
$$

$$
=\quad \log _{80} 60
$$

$$
=1
$$

[94] (c)
$3^{x}=5^{y}=75^{z}=\mathrm{k}$ (let)
then $3^{x}=k, \quad 5^{y}=k, \quad 75^{2}=k$ $3=k^{1 / x}, \quad 5=k^{1 / y}, 75=k^{1 / 2}$
we know that

$$
75=3 \times 5 \times 5
$$

$$
\begin{aligned}
& k^{\frac{1}{z}}=k^{\frac{1}{x}} \cdot k^{\frac{1}{y}} \cdot k^{\frac{1}{y}} \\
& k^{\frac{1}{2}}=k^{\frac{1}{x}+\frac{1}{y}+\frac{1}{y}}
\end{aligned}
$$

on comparing

$$
\begin{aligned}
& \frac{1}{z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y} \\
& \frac{1}{z}=\frac{1}{x}+\frac{2}{y} \\
& \frac{1}{x}+\frac{2}{y}=\frac{1}{z}
\end{aligned}
$$

[95] (c) If $\log 2=0.3010$ and $\log 3=0.4771$ then $\log 24=\log (2 \times 2 \times 2 \times 3)$

$$
=\log 2+\log 2+\log 2+\log 3
$$

$$
=3 \log 2+\log 3
$$

$$
=3 \times 0.3010+0.4771
$$

$$
=0.9030+0.4771
$$

$$
=1.3801
$$

[96] (a) If $a b c=2$

$$
\begin{array}{ll}
a b=\frac{\mathbf{2}}{\mathbf{c}}=2 c^{-1} & a=\frac{\mathbf{2}}{\mathbf{b} \mathbf{c}}=2 b^{-1} c^{-1} \\
b c=\frac{\mathbf{2}}{\mathbf{a}}=2 \mathrm{a}^{-1} & \mathrm{~b}=\frac{\mathbf{2}}{\mathbf{c}}=2 \mathrm{c}^{-1} \mathrm{a}^{-1} \\
\mathrm{ca}=\frac{\mathbf{2}}{\mathbf{b}}=2 \mathrm{~b}^{-1} & \mathrm{c}=\frac{\mathbf{2}}{\mathbf{a}}=2 \mathrm{a}^{-1} \mathrm{~b}^{-1}
\end{array}
$$

Given

$$
\begin{aligned}
& \text { n } \frac{1}{1+a+2 b^{-1}}+\frac{1}{1+\frac{1}{2} b+c^{-1}}+\frac{1}{1+c+a^{-1}} \\
& =\frac{1}{1+a+2 b^{-1}}+\frac{2 b^{-1}}{2 b^{-1}\left(1+\frac{1}{2} b+c^{-1}\right)}+\frac{a}{a\left(1+c+a^{-1}\right)} \\
& =\frac{1}{\left(1+a+2 b^{-1}\right)}+\frac{2 b^{-1}}{2 b^{-1}+1+2 b^{-1} c^{-1}}+\frac{a}{a+a c+1} \\
& =\frac{1}{1+a+2 b^{-1}}+\frac{2 b^{-1}}{2 b^{-1}+1+a}+\frac{a}{a+2 b^{-1}+1} \\
& =\frac{1+2 b^{-1}+a}{1+a+2 b^{-1}} \\
& =1
\end{aligned}
$$

S-618 CPT Solved Scanner : Quantitative Aptitude (Paper 4)

[97] (a) Total no. of coins $=23$
Ratio of ₹ 1 coin : ₹ 2 coins = 3 : 2
let No. of ₹ 1 coins $=3 x$
No. of ₹ 2 coins $=2 x$
No. of ₹ 5 coins $=23-3 x-2 x$ $=23-5 x$
Total value of all coins $=43$
$3 x \times 1+2 x \times 2+(23-5 x) 5=43$
$3 x+4 x+115-25 x=43$
$-18 x=43-115$
$-18 x=-72$
$x=\frac{-72}{-18}=4$
No. of $₹ 1$ coins $=3 x=3 \times 4=12$
[98] (c) $a: b=2: 3 \quad \frac{\mathbf{a}}{\mathbf{b}}=\frac{\mathbf{2}}{\mathbf{3}}$ \qquad
$\mathrm{b}: \mathrm{c}=4: 5 \quad \frac{\mathbf{b}}{\mathbf{c}}=\frac{\mathbf{4}}{\mathbf{5}}$ \qquad
$c: d=6: 7 \quad \frac{\mathbf{c}}{\mathbf{d}}=\frac{\mathbf{6}}{\mathbf{7}}$
Multiply equation (i) \& (ii) \& (iii)

$$
\frac{a}{b} \times \frac{b}{c} \times \frac{c}{d}=\frac{2}{3} \times \frac{4}{5} \times \frac{6}{7}=\frac{16}{35}
$$

[99] (b) $\log \left(1^{3}+2^{3}+3^{3}+\cdots---+n^{3}\right)$
$=\log \left(\sum n^{3}\right)$
$=\log \left[\frac{n(n+1)}{2}\right]^{2}$
$=2 \log \left[\frac{n(n+1)}{2}\right]$
$=2[\log n+\log (n+1)-\log 2]$
$=2 \log n+2 \log (n+1)-2 \log 2$
[100] (b) If $a=\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}$ and $b=\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$

$$
\begin{aligned}
a+b & =\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}+\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}} \\
& =\frac{(\sqrt{6}+\sqrt{5})^{2}+(\sqrt{6}-\sqrt{5})^{2}}{(\sqrt{6}-\sqrt{5})(\sqrt{6}+\sqrt{5})} \\
& =\frac{6+5+2 \sqrt{50}+6+5-2 \sqrt{30}}{(\sqrt{6})^{2}-(\sqrt{5})^{2}} \\
& =\frac{22}{6-5}=\frac{22}{1}=22 \\
a \cdot b & =\left(\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}\right)\left(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}\right)=1 \\
\frac{1}{a^{2}} & +\frac{1}{b^{2}}=\frac{b^{2}+a^{2}}{a^{2} b^{2}}=\frac{(a+b)^{2}-2 a b}{(a b)^{2}} \\
& =\frac{(22)^{2}-2 \times 1}{(1)^{2}}=\frac{484-2}{1}=482
\end{aligned}
$$

[101] (c) Ratio of ₹ 5 coins and ₹ 10 coins $=8: 15$
Let the No. of ₹ 5 coins $=8 x$
and the No. of $₹ 10$ coins $=15 x$
The value of ₹ 5 coins $=₹ 5 \times 8 \mathrm{x}$

$$
360=40 x
$$

$$
x \quad=\frac{360}{40}
$$

$$
x \quad=9
$$

No. of $₹ 10$ coins $=15 x$
$=15 \times 9$
$=135$
[102] (c) If $\log _{3}\left[\log _{4}\left(\log _{2} \mathrm{x}\right)\right]=0$

$$
\begin{aligned}
& \log _{4}\left(\log _{2} x\right)=3^{0} {\left[\log _{a} b=x \quad b=a^{\times}\right] } \\
& \log _{4}\left(\log _{2} x\right)=1 \\
& \log _{2} x=4^{1} \\
& \log _{2} x=4 \\
& x \\
& x=2^{4} \\
& x
\end{aligned}
$$

S-620 \quad CPT Solved Scanner : Quantitative Aptitude (Paper 4)

[103] (d) If $\log \left(\frac{x-y}{2}\right)=\frac{1}{2}(\log x+\log y)$

$$
\begin{aligned}
& 2 \log \left(\frac{x-y}{2}\right)=\log x+\log y \\
& \log \left(\frac{x-y}{2}\right)^{2}=\log (x y) \\
& \left(\frac{x-y}{2}\right)^{2}=x y \\
& \left(\frac{x-y}{4}\right)^{2}=x y \\
& x^{2}+y^{2}-2 x y=4 x y \\
& x^{2}+y^{2}=4 x y+2 x y \\
& x^{2}+y^{2}=6 x y
\end{aligned}
$$

[104] (a) If $\frac{\mathbf{1}}{\mathbf{2}}, \frac{\mathbf{1}}{\mathbf{3}}, \frac{\mathbf{1}}{\mathbf{5}}, \frac{\mathbf{1}}{\mathbf{x}}$ are in proportion
then, product of extremes = Product of means

$$
\begin{aligned}
& \frac{1}{2} \times \frac{1}{x}=\frac{1}{3} \times \frac{1}{6} \\
& \frac{1}{2 x}=\frac{1}{15} \\
& 2 x=15 \\
& x=15 / 2
\end{aligned}
$$

